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In vivo staging of regional amyloid
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ABSTRACT

Objectives: To estimate a regional progression pattern of amyloid deposition from cross-sectional
amyloid-sensitive PET data and evaluate its potential for in vivo staging of an individual’s amyloid
pathology.

Methods: Multiregional analysis of florbetapir (18F-AV45)–PET data was used to determine indi-
vidual amyloid distribution profiles in a sample of 667 participants from the Alzheimer’s Disease
Neuroimaging Initiative cohort, including cognitively normal older individuals (CN) as well as pa-
tients with mild cognitive impairment and Alzheimer disease (AD) dementia. The frequency of
regional amyloid positivity across CN individuals was used to construct a 4-stage model of pro-
gressing amyloid pathology, and individual distribution profiles were used to evaluate the consis-
tency of this hierarchical stage model across the full cohort.

Results: According to a 4-stage model, amyloid deposition begins in temporobasal and frontome-
dial areas, and successively affects the remaining associative neocortex, primary sensory-motor
areas and the medial temporal lobe, and finally the striatum. Amyloid deposition in these brain re-
gions showed a highly consistent hierarchical nesting across participants, where only 2% ex-
hibited distribution profiles that deviated from the staging scheme. The earliest in vivo amyloid
stages were mostly missed by conventional dichotomous classification approaches based on
global florbetapir-PET signal, but were associated with significantly reduced CSF Ab42 levels.
Advanced in vivo amyloid stages were most frequent in patients with AD and correlated with
cognitive impairment in individuals without dementia.

Conclusions: The highly consistent regional hierarchy of PET-evidenced amyloid deposition
across participants resembles neuropathologic observations and suggests a predictable regional
sequence that may be used to stage an individual’s progress of amyloid pathology in vivo.
Neurology® 2017;89:2031–2038

GLOSSARY
AD5 Alzheimer disease; ADNI5 Alzheimer’s Disease Neuroimaging Initiative; CN5 cognitively normal;DR5 delayed recall;
GM 5 gray matter; MCI5mild cognitive impairment; PVE 5 partial volume effects; SUVRCer 5 standard uptake value ratios
scaled to the mean uptake of the whole cerebellum; TMT-B 5 Trail Making Test B.

A distinct regional progression pattern of cerebral amyloid deposits has been estimated from
case series of neuropathologic examinations and forms the basis of widely used staging schemes
for the characterization of an individual’s extent of amyloid pathology at autopsy.1,2 Interest-
ingly, early phases of amyloid deposition are mainly found in individuals who were cognitively
unimpaired at last clinical evaluation, arguing for a protracted preclinical phase of amyloid
pathology.2–7
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The advent of amyloid-sensitive PET imag-
ing methods allows detecting cerebral amyloid
deposits in living individuals with very high
sensitivity and specificity.8–10 However, in
contrast to the neuropathologic staging
schemes, PET imaging data are mainly being
used for the characterization of global amyloid
burden into dichotomous positive/negative
categories. Recent imaging–pathologic corre-
lation studies found that amyloid positivity as
conventionally defined usually corresponds to
relatively advanced phases of amyloid
pathology.11,12

We explored the feasibility of in vivo PET-
based amyloid staging using a large sample of
amyloid-sensitive florbetapir (18F-AV45)-PET
data covering the full clinical spectrum of
Alzheimer disease (AD), and adopting estab-
lished neuropathologic approaches for determin-
ing regional staging models of amyloid
pathology and other proteinopathies.1,2,13–16 Spe-
cifically, this includes estimation of a regional
progression sequence based on the frequency
of regional amyloid positivity across participants
and evaluation of the regional hierarchy of amy-
loid deposition along this sequence across indi-
vidual deposition profiles. The identified in vivo
amyloid stages were characterized with respect to
conventional dichotomous florbetapir-PET clas-
sifications, CSF Ab42 levels, as well as clinical
diagnosis and cognition.

METHODS Participants. All data used in the present study

were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) (adni-info.org). The present study sample con-

sisted of a total of 667 participants enrolled in the ADNI-GO and

ADNI-2 cohorts, who had concurrent 18F-AV45-PET and high-

resolution structural MRI scans available. The sample included

179 cognitively normal (CN) older individuals, 403 patients with

mild cognitive impairment (MCI), and 85 patients with AD

dementia. Detailed diagnostic criteria have been reported pre-

viously17,18 and are published on the ADNI website (adni.loni.

usc.edu/methods/). Sample characteristics are summarized in

table 1.

Standard protocol approvals, registrations, and patient
consents. Data collection and sharing in ADNI was approved by

the institutional review board of each participating institution and

written informed consent was obtained from all participants.

Imaging data. Acquisition and standardized preprocessing steps

of the multicentric MRI and PET imaging data in ADNI have

been reported previously19,20 and are described in detail on the

ADNI website (adni.loni.usc.edu/methods/). Briefly, structural

MRI data were acquired on 3T scanning platforms using T1-

weighted sagittal 3D magnetization-prepared rapid gradient

echo sequences. Florbetapir-PET scans were acquired during

a 50- to 70-minute interval following a 370 MBq bolus injection

of florbetapir (18F). All ADNI imaging data undergo standardized

preprocessing steps aimed at increasing data uniformity across the

multicenter scanner platforms.

Procedures for preprocessing of the imaging data have been

described in detail previously.19,20 Briefly, florbetapir-PET scans

were rigidly coregistered to the corresponding structural MRI

scan, corrected for partial volume effects (PVE),21,22 and spatially

normalized to an aging/AD-specific reference template using the

registration measures from the corresponding MRI scans.

Regional florbetapir-PET uptake values were sampled from 52

brain regions defined in the Harvard–Oxford structural atlas,23

covering the whole cerebral cortex, as well as hippocampus,

amygdala, striatum, and thalamus. The atlas labels were propa-

gated to the customized template space using nonlinear image

registration, and multiplied with a binary gray matter (GM)

mask of the reference template thresholded at 50% GM prob-

ability.20 Regional florbetapir-PET uptake means were converted

to standard uptake value ratios by scaling to the mean uptake of

the whole cerebellum (SUVRCer) in non-PVE-corrected

data.22,24

Individual regional amyloid deposition profiles, i.e., the presence

or absence of amyloid pathology in each of the 52 brain regions,

were determined based on a cutoff of regional SUVRCer 5 0.92.

This cutoff lies in between the 2 most commonly used cutoffs of

SUVRCer 5 1.10 and SUVRCer 5 1.17 for establishing amyloid

positivity based on the global cortical signal10,25–27 in

non-PVE-corrected florbetapir-PET data and was extrapolated to

Table 1 Sample characteristics

CN MCI AD

n 179 403 85

Age, y 73.8 6 6.5 71.7 6 7.7 75.6 6 8.3

Sex, M/F 88/91 220/183 49/36

Education, y 16.6 6 2.5 16.1 6 2.7 15.7 6 2.8

MMSE, AU 29.1 6 1.2 28.1 6 1.7 22.9 6 2.0

Delayed recall, AU 7.5 6 4.0 5.0 6 4.2 0.7 6 1.1

Trail Making Test B, s 80 6 39 106 6 58 194 6 85

Abbreviations: AD 5 Alzheimer disease; CN 5 cognitively normal; MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental
State Examination.
Average values are reported as mean 6 SD.
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the PVE-corrected florbetapir-PET data of this study using linear

regression.26 More detailed information on cutoff selection is pro-

vided in appendix e-1 at Neurology.org.

Data analysis. Determination of a model of regionally
progressing amyloid pathology. In analogy to the approach used
in previous neuropathologic staging studies,1,2,13,14 a model of

regionally progressing amyloid pathology was estimated based on

the frequency of regional amyloid positivity across participants,

where the proportion of participants who exhibit amyloid pathol-

ogy in a given brain region is used as an indicator of this region’s

temporal involvement in the course of spatially progressing amy-

loid pathology. This approach critically depends on a high regional

variance in amyloid deposition across the examined participants.

Thus, due to our focus on the characterization of early phases of

amyloidosis, and given that amyloid load is believed to reach global

levels before the emergence of cognitive impairments,28 we

restricted the determination of the progression model to the sam-

ple of cognitively normal older individuals.

In order to operationalize the regionally detailed progression

model into a manageable staging system, the 52 ranked anatom-

ical regions were merged into 4 larger anatomical divisions (1–4)

based on equally sized proportions of the observed range of

involvement frequencies (illustrated in figures 1 and e-1). Addi-

tional analyses also explored regionally less or more detailed 3- or

5-stage models (appendix e-1).

In vivo staging of individual amyloid pathology. Regardless
of diagnosis, individual amyloid deposition profiles were used to

stage each individual’s florbetapir-PET scan according to the

estimated 4-stage model of regional amyloid progression. For this,

an anatomical division was defined positive for amyloid pathology

if at least 50% of the regions included in this division exhibited

suprathreshold signal in the respective participant. Participants

who only exhibited amyloid deposition in the first division were

classified as being in stage I, and successive stages II-IV were

characterized by additional involvement of anatomical divisions

2, 3, and 4, respectively. Participants who exhibited amyloid

positivity in any division .1 without concurrent amyloid

positivity in the previous divisions were classified as being non-

stageable. A high proportion of stageable vs nonstageable partic-

ipants is an indicator of the general validity of the hierarchical

staging scheme.15,16 Given that this proportion may be biased in

the CN group, because it is also used for determining the staging

model in this study, we further conducted sensitivity analyses

across independent training and test samples for this group

(appendix e-1).

For comparison, florbetapir-PET scans were also convention-

ally classified as amyloid-positive or amyloid-negative based on

the commonly used cutoffs of SUVRCer 5 1.10 and SUVRCer

5 1.17, applied to the global composite SUVRCer values that are

made available in the ADNI database (Jagust Lab, UC Berkley;

adni.loni.usc.edu/methods/pet-analysis).

In vivo amyloid stages in relation to a CSF biomarker of
amyloid pathology. Amyloid stages were studied in relation to

CSF Ab42 levels, which are well-known to decrease as cortical

amyloid deposition increases.29,30 CSF measures of Ab42 from

the same study time point were available for 90% (n 5 603) of

the study sample. Methods for CSF biomarker quantification in

the ADNI cohort are based on the xMAP Luminex platform and

Innogenetics/Fujirebio AlzBio3 immunoassay kits and are

described in detail elsewhere31 (adni.loni.usc.edu/methods/).

Differences in CSF Ab42 levels across increasing amyloid stages

were assessed using Spearman correlation and Mann-Whitney U
tests between the first 2 amyloid stages and the group without any

evidence of regional amyloid deposition (stage 0).

In vivo amyloid stages in relation to clinical diagnosis and
cognition. Differences in the distribution of amyloid stages

between clinical diagnoses were assessed using x2 test. In addition,

for each diagnostic group separately, we assessed associations

between progressing amyloid stage and cognitive performance in

tests of episodic memory (30-minute delayed recall [DR] of the

Rey Auditory Verbal Learning Test) and executive function (Trail

Making Test B [TMT-B]) using Spearman correlations. For

comparison, associations between increasing amyloid load and

cognitive performance were also assessed using continuous global

composite SUVRCer values and the conventional lower cutoff for

Figure 1 Model of regional amyloid progression and staging scheme

Brain renderings on the left illustrate the frequency of regional amyloid positivity across individuals on a color scale from
black/blue (lowest) to yellow/red (highest). The 52 brain regions are merged into 4 larger anatomic divisions based on equal
partitions of the frequency range (1–4). In the resulting 4-stage model of regional amyloid progression (I–IV), incremental
stages are defined by involvement of higher numbered anatomic divisions (in red), in addition to the affected areas of the
previous stage (blue).
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defining presence of detectable amyloid deposits (SUVRCer .

1.10).

RESULTS Model of regionally progressing amyloid

pathology. The examined brain regions differed
markedly with respect to the presence of amyloid
pathology across CN individuals (figures 1 and e-1).
Amyloid deposition was most frequently observed in
the basal part of the temporal lobe (inferior temporal
and fusiform gyrus), the anterior cingulate gyrus, and
the parietal operculum (;55%–45% of individuals),
followed by wide parts of the temporal, frontal, and

parietal associative cortex (;40%–30%). Amyloid
deposits in primary sensory-motor cortices (pre-
central and postcentral, occipital pole, Heschl gyrus)
and anterior medial temporal lobe structures were
considerably less frequent (;25%–15%), and only
a small minority showed amyloid positivity in the
posterior medial temporal lobe and the striatum
(;10%–5%). None of the participants exhibited
amyloid positivity in the thalamus. This pattern was
very robust against variations in the cutoff used for
defining regional amyloid positivity (appendix e-1),
and was used to define a 4-stage model of regional
amyloid progression by grouping the brain regions
from highest to lowest frequency into 4 anatomic
divisions (figures 1 and e-1).

In vivo staging of individual amyloid pathology. Assess-
ing regional amyloid deposition across the 4 anatomic
divisions in individual florbetapir-PET scans yielded
a highly consistent hierarchical deposition pattern
across participants, allowing us to classify 98%
(410/418) of participants with detectable regional
amyloid deposition into any of the 4 successive
amyloid stages (figures 2 and 3; table e-1). Sensitivity
analyses across independent training and test samples
indicated negligible bias in the proportion of stage-
able vs nonstageable participants in the CN group
(appendix e-1). In vivo amyloid stages were positively
associated with age in the CN (p 5 0.006) and MCI
groups (p 5 0.002), but not in the AD group (p 5

0.139) (appendix e-1).
Table 2 compares the in vivo amyloid staging

scheme to conventional dichotomous classifications.
Based on a global cortical cutoff of SUVRCer 5 1.17,
all stage IV participants and the vast majority of stage
III participants were identified as being amyloid-
positive, whereas half of stage II and the vast majority
of stage I participants were classified as being
amyloid-negative. Even at a much lower cutoff of
SUVRCer 5 1.10, 25% of stage II participants and
the large majority of stage I participants (81%) were
still classified as amyloid-negative. However, charac-
terizing the different amyloid stages in terms of an
external CSF-based amyloid biomarker demonstrated
a continuous decline in Ab42 levels across progress-
ing amyloid stages (table 2; r595 5 20.80, p ,

0.001), which was already noticeable at the earliest
amyloid stages I (27%, p 5 0.01) and II (229%,
p, 0.001) when compared to Ab42 levels of stage 0.

Among participants exhibiting stageable amyloid
deposition, distribution of in vivo amyloid stages dif-
fered significantly between diagnostic categories (x2 5

72.98, p , 0.001; figure 3 and table e-1), with higher
in vivo amyloid stages being more frequent in patients
withMCI or AD compared to CN individuals. Amyloid
stages III or IV (indicating extraneocortical involvement)

Figure 2 Staging of individual amyloid burden

Each row of the matrix corresponds to a study participant and each column to one of the 4
anatomic divisions (1–4). Absence or presence of amyloid is denoted by gray and red, respec-
tively. Amyloid deposition in the 4 anatomic divisions shows a consistent hierarchical nesting
across participants, allowing us to stage 98% of the participants with detectable regional
amyloid deposits into one of the 4 amyloid stages predicted by the regional progression
model (blue boxes, I–IV). Only 8 participants showed distribution profiles that did not con-
form to the model (yellow arrows; 2 individuals [1 cognitively normal (CN), 1 Alzheimer
disease] with deposition profiles of 1-1-0-1; 5 individuals [2 CN, 3 mild cognitive impairment
(MCI)] with 0-1-0-0; and 1 individual [MCI] with 0-0-0-1).
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were observed in 96% of patients with AD, 66% of
patients with MCI, and 42% of CN individuals with
detectable amyloid deposition. Within diagnostic
groups separately, higher amyloid stages were associated
with worse DR performance in CN (r79520.40, p,
0.001), and with worse DR (r248520.30, p, 0.001)
and TMT-B performance (r245 5 0.33, p, 0.001) in
MCI, but did not associate with cognition in AD (p .
0.86) (table e-2). By contrast, among participants iden-
tified as being amyloid-positive by a conventional global
cutoff of 1.10, SUVRCer values correlated with cogni-
tion in MCI (DR: r213520.29, p, 0.001, TMT-B:
r212 5 0.35, p, 0.001) and AD (DR: r72 5 20.25,
p 5 0.035), but not in CN (p . 0.17).

DISCUSSION In analogy to neuropathologic staging
studies, we extrapolated a regional pattern of amyloid
progression on the basis of florbetapir-PET amyloid
deposition profiles across participants, and assessed its
utility for in vivo staging of an individual’s amyloid
burden. The approach suggested a progression pat-
tern from temporobasal and frontomedial areas, over

the remaining associative neocortex, to primary
sensory-motor cortex, the medial temporal lobe, and
finally the striatum. Individual deposition profiles
showed a highly consistent hierarchical nesting across
these brain regions, arguing for the general validity of
the progression model and enabling an in vivo staging
of an individual’s progress of amyloid pathology on
the basis of cross-sectional imaging data.

The estimated pattern of regional amyloid progres-
sion in the florbetapir-PET data shows a remarkable
resemblance with previous neuropathologic estimates.
Particularly the progression from the associative
neocortex over primary sensory-motor areas and
the medial temporal lobe to the striatum is
well-described in the neuropathologic literature and cor-
responds to phases 1 to 3 of the widely used Thal
scheme of 5 progressive phases of cerebral amyloidosis.2,4

While the first Thal phase encompasses the whole asso-
ciative neocortex without further regional distinction,
previous neuropathologic studies specifically implicated
basal portions of the temporal and frontomedial cortex
in the initial phase of amyloid accumulation (corre-
sponding to the first stage of the Braak A-B-C scheme
of amyloid progression).1,3,5,6 However, other cross-
sectional 11C-PiB-PET estimates based on regional cor-
relates of increasing global SUVR values pointed to
medial frontal, medial parietal, and lateral temporo-
parietal areas as the sites of initial amyloid accumula-
tion, without noticeable involvement of the inferior
temporal cortex.12,32 Besides possible radiotracer-
related differences, these discrepancies are likely to
be attributable to the different analytic approaches.
A recent 18F-florbetaben-PET study used a similar
approach to the one employed in our study and re-
ported a very similar pattern of most frequently
observed amyloid deposits in basal temporal and fron-
tomedial cortices, and least frequent deposits in the
medial temporal lobe (the striatum was not investi-
gated).33 However, differences in involvement fre-
quencies across neocortical regions were rather
small, which probably relates to a high proportion
of participants with globally progressed amyloid

Figure 3 Proportions of in vivo amyloid stages by clinical diagnosis

The relative proportions of in vivo amyloid stages were plotted for each diagnostic group
separately and across all participants. Among participants exhibiting stageable amyloid
deposition, there is a shift from lower to higher in vivo amyloid stages across the cognitively
normal (CN) over the mild cognitive impairment (MCI) to the Alzheimer disease (AD) group.
Unstageable cases were relatively rare across all diagnostic categories.

Table 2 Amyloid stages in comparison to dichotomous classifications and CSF amyloid

0 I II III IV

n 249 68 63 127 152

SUVRCer > 1.17 1 (,1%) 3 (4%) 33 (52%) 118 (93%) 152 (100%)

SUVRCer > 1.10 6 (2%) 13 (19%) 47 (75%) 123 (97%) 152 (100%)

CSF Ab42a (mean 6 SD) 224 6 36 209 6 39b 160 6 39c 138 6 24c 127 6 20c

Abbreviations: CSF Ab42 5 CSF levels of Ab42 (pg/mL); SUVRCer 5 standard uptake value ratio with whole cerebellar
reference region.
aCSF biomarker values were only available for a subset of participants (n 5 597).
bSignificantly different from stage 0 at p , 0.05.
c Significantly different from stage 0 at p , 0.001.
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pathology in the clinical sample used for model deter-
mination. Accordingly, no attempts were made in this
previous study to use the estimated progression pat-
tern in the context of an in vivo staging scheme.

In our individual staging analyses, only 2% of par-
ticipants with detectable amyloid deposition violated
the proposed hierarchy of regional involvement (fig-
ures 2 and 3 and table e-1). The consistent regional
hierarchy of amyloid deposition in this large series of
florbetapir-PET scans across the full clinical spectrum
of AD strongly indicates that PET-measured amyloid
deposition follows a predictable regional sequence
that can be used analogously to established neuro-
pathologic approaches for staging an individual’s
pathologic state along this sequence. However, in this
cross-sectional data it remains unknown whether in-
dividuals inevitably progress from earlier to later
stages, as well as under which circumstances and at
which rates this progression occurs. A distinct advan-
tage of the presented in vivo staging approach is that it
will allow studying these questions through longitu-
dinal amyloid-PET assessments and analysis of such
data is warranted.

The earliest in vivo amyloid stages identify partic-
ipants with regionally restricted amyloid deposits in
specific neocortical association areas that are probably
entirely missed in clinical routine binary visual assess-
ment,11 and mostly missed by semiquantitative clas-
sification approaches based on suprathreshold global
cortical signal, even at a relatively lenient cutoff (table
2). Decreased CSF Ab42 levels compared to the stage
0 group corroborate the neurobiologic relevance of
the regionally increased florbetapir-PET signal in
these participants. Of course, the consistency of hier-
archical amyloid deposition across participants has its
limitation with respect to regional detail. Thus, while
regionally more fine-grained staging schemes may
potentially further increase the sensitivity to detect
earliest focal amyloid deposits, they will also generally
result in higher numbers of participants who show
deviating deposition patterns (i.e., are nonstageable;
appendix e-1). Moreover, the distinct amyloid pro-
gression pattern as estimated here and in neuropath-
ologic case series1,2,34 may be different in genetically
determined forms of amyloid accumulation, particu-
larly with respect to the occurrence of striatal vs cor-
tical amyloid.35–38 Different staging schemes may
have to be developed for these populations.

Based on clinicopathologic correlations between
striatal amyloid deposition (corresponding to Thal
phase 3) and the occurrence of dementia,2,4,34 it has
been suggested to incorporate an a priori distinction
between cortical and striatal amyloid deposition in
the analysis of amyloid-sensitive PET data, represent-
ing a pathologic 2-stage model that would possibly be
more predictive of clinical status.39,40 In our data-

driven estimation of an in vivo staging scheme, we
provide evidence that (1) PET-measured striatal amy-
loid deposition (anatomical division 4 in our model)
is extremely unlikely to occur without concomitant
cortical amyloid (figure 2) and that (2) advanced
in vivo amyloid stages are most frequently observed
in patients with AD and associate with cognitive im-
pairments in individuals without dementia. Compar-
ison with conventional continuous measures of global
amyloid load indicate that these show a higher
dynamic range in clinically overt disease stages,
whereas the presented in vivo staging approach may
be particularly useful for stratification of early, pre-
clinical stages of AD.

A limitation of our in vivo imaging approach to
amyloid staging is that the presence of regional amy-
loid necessarily needs to be defined by a signal cutoff
that aims to separate noise from specific tracer bind-
ing. While we oriented this cutoff on most commonly
used cutoffs for defining amyloid positivity on the
basis of global cortical florbetapir-PET SUVRCer, cut-
off definition is an arbitrary undertaking per se, and
the transferability of global signal cutoffs to regional
signals remains largely unexplored. Furthermore, in
this study we used a constant regional cutoff, whereas
it may be argued that differential cutoffs should be
used due to differing noise levels between brain re-
gions.33,35,40 Although the invariance of the regional
amyloid pattern under varying cutoffs (appendix e-1)
indicates little interregional variability in noise levels
in our PVE-corrected data, the choice of cutoff defi-
nition might well affect the regional staging scheme
and future research should investigate possible advan-
tages of region-specific cutoffs for the presented
in vivo amyloid staging approach. Moreover, as is
the case for cutoffs applied to the global signal,12

the height of the regional cutoff affects the absolute
numbers of individuals with detectable amyloid de-
posits. Thus, cutoff selection as well as other method-
ical choices, such as the regional detail of the staging
scheme, should weigh off priorities for sensitivity or
specificity depending on the actual research context
or clinical application of the staging approach.

Pending replication of our findings in indepen-
dent cohorts and using different radiotracers, the pre-
sented in vivo amyloid staging approach may become
a valuable tool for characterizing an individual’s amy-
loid burden for diagnostic purposes or for sample
stratification in clinical trials.
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